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Deterministic and random tilings for the ten compact Euclidean 3-manifolds are
introduced. The main tools are substitution rules generating non-periodic planar
patterns and a set of pre-axioms defined for each manifold. The sets of random
tilings are obtained by suitable tile flips in the substitution atlas which allows us
to compute their configurational entropies. The inflation rules in two dimensions
together with one-dimensional substitutions in a perpendicular direction induce
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1. Introduction

Tiling models defined as projection from a lattice of higher
dimension into a lower-dimension physical space have been
studied in the last decades in connection with quasicrystal
theory. Quasicrystal order may appear even for random tilings
(Elser, 1985) and it is not yet known if deterministic tilings are
better candidates than random tilings for the description of
quasicrystal materials. A numerical computation of the
entropy of a three-dimensional random Penrose tiling was
described by Strandburg (1991). Monte Carlo simulations for
rhombohedral random tiling models of icosahedral quasi-
crystals were performed by Shaw et al. (1991) and the appli-
cation of transition-matrix Monte Carlo simulations by
Widom et al. (2002) allowed them to determine the entropy of
three-dimensional random rhombus tilings with high preci-
sion. In order to understand better the tiling entropy,
Destainville et al. (2005) develop a mean field theory for
random tilings based on the iterative construction of rhombus
tilings introduced by de Bruijn (1981, 1986). A great deal of
work has also been done on dimer models (Kenyon, 2000;
Kenyon et al., 2006) in connection with domino, lozenge,
diabolo and other types of patterns. An extension of domino
tilings of planar lattice regions to three dimensions has
been considered by Randall & Yngve (2000). The tilings
consist of filling octahedral and tetrahedral regions with
triangular prisms. Another type of method for the generation
of tilings is based on the existence of substitution or inflation
rules (Escudero & Garcia, 2005). This method can be used
also to generate random tilings when local rearrangements of
tiles are included in the inflation rules. In this case, the
configurational entropy can be computed along the lines of
Escudero (2004). In contrast to the domino tilings (we do not
assume here they have a vertex on the center of its long edge),
which are the basis of the constructions studied by Randall
& Yngve (2000), in this work we are interested in both

non-periodic three-dimensional tilings by triangular prisms which can be
transformed into simplicial structures.

two-dimensional and three-dimensional tilings which are
always face to face.

The classification of three-dimensional crystallographic
groups, achieved mainly in the 19th century, led to the deter-
mination of the ten compact Euclidean 3-manifolds (Nowacki,
1934; Hantschze & Wendt, 1935) by taking the quotient of the
Euclidean space by the action of a discrete and fixed point free
group of isometries (Thurston, 1997; Conway & Rossetti,
2003). Recently these spaces have been considered in cosmic
crystallography. Riazuelo ez al. (2004) investigate the signature
of the 17 multiconnected flat spaces in cosmic microwave
background maps. They obtain an orthonormal basis for the
set of eigenvalues of the Laplace operator. Also related is the
work by Rossetti & Conway (2006) where it is shown that
there is, up to scale, a unique non-trivial isospectral pair of
compact Euclidean 3-manifolds: only the quarter-turn space
and the Hantzsche-Wendt space have identical Laplace
spectra.

In recent works, non-periodic tilings for simply and multi-
connected flat manifolds in two dimensions have been derived
(Escudero, 2006a,b, 2007). In the present article, the results
are extended to the ten compact Euclidean 3-manifolds. First,
we consider finite triangle patterns which form the pre-axioms
for two of the fundamental polyhedra faces. These have been
chosen in order to have face-to-face patterns after the corre-
sponding identifications. With the help of two-dimensional
substitutions applied to the two triangular faces of the basic
prisms and the Cartesian product of two one-dimensional
substitutions for the three rectangular faces, we obtain the
desired three-dimensional structures, which can later be
decomposed in order to get simplicial tilings. The two basic
planar patterns have 8-fold and 12-fold symmetries. The
octagonal pattern was generated by Escudero (2000) by
extending the construction of Nischke & Danzer (1996) to
even symmetries. The dodecagonal pattern can be derived
with the help of the constructions studied by Escudero (2001,
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2003). Both patterns are deterministic and we introduce
random tilings which are defined by means of local re-
arrangements of tiles appearing in the inflation rules. In three
dimensions, they are induced by the two-dimensional random
substitutions, and the configurational entropy depends only on
tile rearrangements in the faces of the fundamental polyhedra.

2. Deterministic tilings for Euclidean 2-manifolds

In this section, we first introduce two substitution tilings of the
Euclidean plane 7il,, d = 8,12, and then we show how the
same sets of inflation rules can be used in order to generate
tilings of the flat torus and the Klein bottle. The two-dimen-
sional tilings are described in terms of word sequences in DOL
systems.

Definition 1. A OL system is a triple G = {X, h, ®}, where
¥ = {xy,x,,...,x,}is an alphabet, # is a finite substitution on
Y into the set of subsets of X* and w € X* is the axiom. G is
called a DOL system if #(h(x;)) = 1, for every x; in X.

The first type of structures 7 il; were studied by Escudero
(2006b) for the generation of tilings for two-dimensional flat

manifolds. The letters a,,, b,,, c,,, d,,, e,, represent the proto-
tiles
T(B,A,C), T(C,B,C), T(A A B),
T(B,B,D), 7T(C,A,D), @

respectively, where A, B, C, D have lengths s, s,, 55, 54, With
s, =sin(kn/8). T(X,Y,Z) is a triangular tile with edges
X, Y, Z placed anticlockwise and the index m € Z,, denotes
relative orientation. The tile 7 (X, Y, Z) with the edge Z
placed on the positive x axis corresponds to the index 1. The
oriented tile with index m is obtained by a rotation of
w(m — 1)/8 through the left-most vertex. The alphabet is

Y ={a,,. dy, by Cops Ay €5 €0, ()} ()

with m € Z,,. It contains two brackets and letters of type ¢, and
7. The tile 7, is obtained by a reflection of #, in a line
perpendicular to the edge Z. The set of production rules 4 is
(Fig. 1a)

= (@3l ]) = @720 Byrs1ds10)

m = (P3b,,]) = (Psla,, ] Pslc,,—s]Ps[a,,16])
e t—> (Dg[c,]) = (€,47€,10)
dy—> (P5[d,,)]) = (@46,-1 Ps[€,u (@108 041511 4Pm16))
ey —> (Pgle,]) = (i@ dyirbimi10Pims12€m11)

)—)

(—( 3)
Throughout this paper, the term axiom is used to indicate both
a word and a geometric pattern. By iterating the production
rules applied to any letter representing a tile, we get word

sequences describing the tiling growth. The geometric inter-
pretation of the word sequences is as follows. In the word

(a, +7’Emzm +1d,410), if two letters follow one another inside a
bracket, the corresponding oriented triangles are glued face to
face in a unique way. In the next derivation step, which gives
(D3l D P[E, D PylB, s D(@y[d, 110, two  oriented
triangles represented by consecutive words enclosed by
brackets like ®4[a,, ;] and Pg[e,,] are glued face to face and
again the prescription is unique. For the edge word sequences,
the alphabetis ¥ = {A, B, C, D}, and the production rules are

A1— ¢g[A]l = D
Ci—> ¢4[C] = BDB D i— ¢g[D]

Bi—> ¢g[B] = CC

= ACCA. @

Now we consider the tiling 7 il,,. The triangle edges, denoted
by A,B,C,D, E, F, have lengths s, s2, 83, 84, 85, S, Where
s, = sin(kmr/12). The letters «,,, B> Yms Sms €ms> Cms Mms Oos Mo
Homs Vs €, TEPTESent the prototiles

WWW

 TE R
TR TRy =
Y

(b)
> —\J
(c)

(=2

(d)

Figure 1

(a) Inflation rules for d = 8 with potential regions for flips marked, (b)
inflation rules for d = 12, and tile rearrangements in the inflation rules for
() d=8:d, (€7 = byi108miz> (@) d =12: 131 = Ag12€ns0-
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T(A, A, B), T(B, A, C), T(B, B, D), T(C, A, D), T(D, A, E),
T(D,B,F), T(C,C,F), T(C,B,E),T(E,B,E), T(E,A,F),
T(D, C, E), T(D, D, D). (5)

The alphabet is

~ ~

Y= {O{m, 13m7 Em’ V> 8m’ gm’ Gm’ gm’ é‘m’ é.m’ Mo Gm’ Gm’ A’m’ }“~m’
/“Lm’ ﬁm’vm7"‘)‘m’$m7(’ )} (6)

with m € Z,,. The production rules 4 in this case are (Fig. 1)

\f
g

' §
A

(a)

(5)

(e)
Figure 2
(a) Principle of gluing for the Euclidean torus 72 and the Klein bottle K.
(b) Pre-axioms for 7% and K? (left) and for K? (right). (¢) Pre-axiom
for T2.

Ay 1= (P, ]) = (Hogr1 Hns13)

B —>(@1a[B,]) = €11y Sn1a)

Vi '—> (Ppa[y]) = ((§m+IOEm71;m+10vm+l4)
(Eons11 Mo s138ms1Om414))

1= (Pp8,,]) = (8~m+1lgmzrn+11)”m+14"7m+2nm+15)

€n 1> (Pyf€,]) = (Em+ll§mgm+llzm;m+llUm+15;m+3zm+l6)

S 1> (P12[8n]) = ((Brrs10Vim—10ms10Mm—1 V106 ms7Vins182m+6)
(¢12[Vm]zm+3gm+16))

N 1—> (P[m,,]) = ((8m+99m725m+102;1171izm+llu’m+13)
CntoVm—2Vms18Vm+148m41Oms14)
(’Jm+18Vm+6;m+2§m+15@»1+zgm+15))

O, +—> (P,[6,,]) = ((merlOg;nflnerlO;mfl 142V 15)

(€11 B §m+14’7m+25m+15))

Mg 1= (P[4, ]) = (Poole, i)
(Bin-18m+108m—18ms10Vim-1 V19 Vims7
Smr1sHmte))

Moy '—> (Pl ]) = (O[nH»llEmym+1lgmnm+1lgmgnz+3;m+1ﬁurn+18
Bong17)

Vo = (P [v,]) = (€11 B Ao §m+14nn1+2§m+15gm+3)
(ym+10§};171nm+10;m71 142V 150 m17 B 16)
(Bn2€ms9Em—2Mms9Vm7Mm 185 ms6))

i (P, = ((§m+109m—2§m+9vm—3‘7m+19)
(ﬁn1+llEmfl’Jm+10vm72gm+182m+7§m+18)
(o s138m 1 Vi1 V42 V6 S 170m6)
(9m+149~m+22m+15;m+3Vm+5))

)i—)
(—( ™)
and the edge substitution rules are

A—s ¢,[A] = F Bi—> ¢,[B] = EE
Ci—> ¢,[C] = DFD D—> ¢,[D] = CEEC (8)
E\— ¢,[E] = BDFDB  Fi— ¢,[F] = ACEECA.

The inflation rules given by equations (3) and (7) can be used
for the construction of substitution tilings for the Euclidean
torus 77 and the Euclidean Klein bottle K? [see Fig. 2(a) for
the principle of gluing on their fundamental polygons]. We can
use the same previously defined DOL systems except the
axiom w = ¥ /[ E], where E denotes the pre-axiom.

A pre-axiom for 77 and K? tilings is [see Fig. 2(b) left and
the pattern in Fig. 3]

8 = eyge8se4d1yb15bdyga d13d,b7bod,ayds. )
For a K tiling, we can choose (Fig. 2b, right)
B = dyby,bysage zap,ese,a48,,€5b6byd, . (10)

Other axioms are possible (Fig. 2¢), also based on the tiles
given by equation (5) (see for instance the pre-axiom for the
hexagonal face of cl in Fig. 6 which is valid also for the
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hexagonal T?). Once we give the substitution atlas and the
pre-axioms, which represent face-to-face patterns, the fact that
the tilings will be always face to face in the derivation process
is a consequence of the form of equations (4) and (8) defining
the edge inflation rules. The reason is that, for any edge X,
both satisfy

b4(X) = Mir(¢,(X)), (11)

where the mirror image of a word w is represented by Mir(w).
The resulting words are palindromes and therefore the tilings
satisfy the face-to-face condition.

3. Configurational entropy for non-deterministic
patterns

The tilings discussed in the previous section are deterministic,
in the sense that only one production rule is allowed for each
letter at every step in the derivation process. We introduce
random tilings by means of local rearrangements of tiles in the
substitution rules. For d = 8, an edge flip induces the following
tile rearrangement (see Fig. 1c¢):

Ayp1€ps7 = Dps1omin (12)
and for d = 12 (Fig. 1d)

13ttt = Mg 1264 10- (13)

Definition 2. The configurational entropy per tile S is
the logarithm of the number of tilings of a given size and
shape divided by the number of tiles, in the thermodynamic
limit.

Figure 3

Applying four times the inflation rules given by equation (3) to d, and d,
and gluing through the edge D, we get the fundamental polygon. This
derivation corresponds to the pre-axiom of Fig. 1(b), which is valid for
both 7% and K.

For the derivation of the entropy, we identify congruent
prototiles and we take into account only the tile contents in
the first inflation step given by equations (3) and (7) and not
the tile orientations. The frequency of the tile x is denoted
by F..

Proposition 1. The configurational entropy for the tilings
defined by equation (3) and tile rearrangements given by
equation (12) is

S=——(F, +F,Log2 ~ 0.145. 14
3+2\/§( b 1) Log (14)

Proof: The frequencies of the tiles F,, F,, F,, F,, F, in the
tiling are given by the elements of the normalized eigenvector
corresponding to the eigenvalue with largest modulus of the
substitution matrix. The normalized eigenvector associated
with the eigenvalue o0 = 4 + 2\/2 highest root of x> — 8x + 8,
is

3142242 1 134942 624442 44 +312
a 3’ a ’ a ’ a

=(Fos Fips Fos Fas Fos (15)

where a = 225 + 159+/2. The general solution to the differ-

ence equation

T(n+3) =6T(n+2)+8T(n+1)—16T(n)  (16)

is

T(n) = k,(—2)" + k,8"07" + k;0”. 17)
d
F 23
F E E /
cl c2 c4
c3 ch
pda Z
A 7
— P
. /
c22

Figure 4
Fundamental domains for the compact orientable flat manifolds.
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The number of b and d tiles after n iterations
is NJ=ki(=2)"+ k580" + k50" and NI =k{(-2)"+
ki8'0~" + kdo", respectively, and the total number of
tiles is N, = k;(=2)" + k,8"0™" + ky0", where k?, ki, k; are
constants determined by the initial conditions of the tiles’
content.

We find two copies of d,,_€,,, in Pg[b,] and two in Pgld,,]
(see Fig. 1a). By taking into account
b b d d
%:ﬁ, limﬂzﬁ, (18)

ks N, ks

m

lim

m

and that the number of patterns after iterating n times is

n—1

22 Zm:l(Nf,ﬁNfﬂ)’ (19)

we conclude that equation (14) is satisfied. |

The corresponding result for d = 12 is given by

Proposition 2. The configurational entropy for the tilings
defined by equation (7) and tile rearrangements given by
equation (13) is

1
S = m[z(fy +F, +F,) +6F]Log2 ~ 0.073. (20)

Proof: In this case, we consider the difference equation

T(n+8) =9T(n+7) + 114T(n 4 6) — 296T(n + 5)
— 1440T(n + 4) + 2448T(n + 3) + 2720T(n + 2)
— 2304T(n + 1) — 1536 T(n) 1)

with general solution

Figure 5
Fundamental domains for the non-orientable flat 3-manifolds.

T(n) = ky(—=1)" + k)" + k5(=2v/3)" + k,2v/3)"
+ k(=2 = 23/3)" + k4" (2 — 2V/3)" + k2" (=2 + V/3)"
+ ked" (2 + V/3)". (22)

Now we have two copies of ¢, 13U, In
®ply, ). ®pln,l. ®plh,] and six in @y[¢,]. By using Mathe-
matica (Wolfram, 1991), we get

F,~0.0548, F,~0.1266, F, ~0.1181, F, ~0.1645
(23)

and equation (20) is satisfied by following similar arguments to
those given in the proof of Proposition 1. ]

4. Tilings for the compact Euclidean 3-manifolds

The fundamental polyhedra for the ten compact flat 3-mani-
folds are represented in Figs. 4 and 5. The front and back faces
are glued as indicated by the letter F. The unmarked faces are
glued straight across and the marked faces are glued as indi-
cated by the small black and white rectangles. In Fig. 4, we can
see two fundamental domains for the Hantzsche—Wendt space
where the identifications are as shown by the letters F, L, R, P.

The tilings we want to consider have triangular prisms as
prototiles (Fig. 10a). Depending on the axiom w, the triangular
faces grow by iterating the inflation rules defined by equations
(3) or (7). The inflation rules for the rectangular faces are the
Cartesian product of two one-dimensional substitutions. We

]
A
\
I
X

- U @
7 DI
a2 N2 7 Q)
raiﬁ‘%"“"‘%“li 3
UAEINPIAN
NN =wiy SAus Sy

AL
N
D
£
./
2
Y

cl \1

77
X
N
S
Ay
7)
A
N

\/

‘;l
A
\/
%

()

/
ra
b

Q)
(§]

c4
Figure 6
Pre-axioms for the faces marked with F of the fundamental polyhedra
corresponding to cl, c2, c4. In the hexagonal face of the cl1 polyhedron,
we draw a path which allows us to describe the pre-axiom by a word
without brackets [equation (25)].
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choose the substitutions corresponding to the edges which are
given by equations (4) and (8). In Fig. 10(b), we see an
example for d = 8. The rectangular face has edges C, D and
the first inflation step shown corresponds to the substitution
rules given by equation (4). The axioms for the polygonal
faces marked with letters in the fundamental polyhedra are
o = ®,[E], where E denotes the pre-axiom. Only for some
cases do we give the complete word. For the remaining cases,
due to the words’ length, we give only the first and the last
letters of the words representing the pre-axioms. The complete
words can be obtained by following the paths shown in Figs.
6-9. The patterns corresponding to w are placed on the faces
marked with the letter F in Figs. 4-5 and on the top and
bottom faces for the Hantzsche—~Wendt manifold. The pre-
axioms, represented in Figs. 6-9, are the following ones.

(i) 3-Torus (c1)

(a) cubic 3-torus:

- ~ ~ ~
E = epeye4dyybysbidygasard,boboashzagas; (24)

(b) hexagonal 3-torus:

E = 0,000, - . - (100142150502 200,4- (25)
(ii) Half-turn space (c2):
E :zl()eIZZ2e4d12b15bld10a1313d4b7b9d2a955' (26)

'H—‘:-F..';:,a
\ > o
NS
ALK
QDL LTINS
KD
I XNTTD g7 _
‘1 '.V \‘.“" _?"
SN RN
LN SN
=am Igi "*‘%“b d "‘f,‘ ‘ Q.\;
o SRR
h ‘h- e » <]
KA
NKSNKT
DS ¥

ch

c22
Figure 7
Pre-axioms for ¢3, c6, ¢22. The words in equations (27), (29) and (30) can
be completed by following the paths indicated.

(iii) Third-turn space (c3):
B = 0500010 - - - rsksMiornbs-
(iv) Quarter-turn space (c4):
8 = (Bg[d N(Ps[ds (P [do)(Pg[d5])-
(v) Sixth-turn space (c6):
E = 01,6,01 . . . 019003k [h13-
(vi) Hantzsche-Wendt space (c22):
E =ay4€13a,4b . . . e385a4d, .
(vii) Klein space (+al):
E = Ai606V15V140; - - - 01506014.
(viii) Klein space with horizontal flip (—al):
B = 85¥5Br1ePais - - - VohalisVaVm-
(ix) Klein space with vertical flip (+a2):
E = 0405015 - - - €A20160402005 )15
(x) Klein space with half turn (—a2):

E = MV 168131 - - - M 8s€15€6-

IRE
NG
(KA
| SR
o caAN 7=
SRS

A
N
%
L)
Va
v

X
X

o~
DN
\-
s
AL
K\
Dew

, T—

NN

e
SRR

77 I /“h- AR

‘b. ﬂg~ » ;. - ‘—"' v
NSNS
NS A 7K

/\

A Aoy, ) . ‘
\Yé’;:ﬁiﬁh.géﬂfs
<INV ORI

f ’ Y,
2o - Yoy A
SSVANAVYY VA

Figure 8
Pre-axioms for +al, —al and paths for equations (31) and (32).

27

(28)

(29)

(30)

G

(32)

(33)

(34)
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No brackets are necessary for the pre-axiom descriptions, but
for simplicity we have used them in equation (28). Once we
have the pattern in accordance with an axiom in the two
parallel faces marked with letters in Figs. 4-5, we join up all
the corresponding vertices by straight segments L parallel to
the unmarked faces. This is the first tiling by triangular prisms.
Then in the first inflation step applied to L (edge D in Fig.
10b), each vertex in the resulting one-dimensional tiling
defines in a unique way a plane parallel to the marked faces.
We place by parallel transport in each of this planes the
triangle patterns of the marked faces and we join up again the
corresponding vertices by straight segments. This procedure is
repeated at each inflation step. By construction of the pre-
axioms and because the words representing the inflated edges
are palindromes [see equation (11)], the tilings for the ten
compact Euclidean manifolds satisfy the face-to-face condi-
tion. Also, this condition is fulfilled by the three-dimensional
random tilings induced by the non-deterministic substitution
rules derived from equations (12) and (13), which determine
also their configurational entropies. The reason is that the
entropy computations performed in the proofs of Propositions
1 and 2 give results independent of the initial conditions about
the tiles’ content. If no additional entropic term is introduced
in the three-dimensional constructions, then the entropies
depend only on the type of inflation rules applied to the planar

A
-V A\ f&:\»:‘q;
RN
AV VA ZaVAN
SR
DERAINKIIA
XL
"

5 — \“ i\ " /a :’
Wav N2t
N AR\
S
\[BZA NN

]
_-."A'hﬁe"g "Vg"‘)':’;-_’j
AN
%\%Zev‘i‘vrg‘-;if
NA TN
“'"'f

-a2

Figure 9
Pre-axioms for +a2, —a2 and paths for equations (33) and (34).

pre-axioms and not on their tile contents, and hence they are
the same as in two dimensions.

In order to generate simplicial tilings, arrows can be placed
on the edges with certain orientations. A triangular prism is
decomposed into three tetrahedra in accordance with the
arrow orientations as in Fig. 11(a). In addition to the cases
studied in this work, other types of inflation factors and
substitution rules are possible for some manifolds (Escudero,
2006a,b, 2007). In those cases, all the triangle edges have an
arrow except the longest edge. There are two possibilities for
each arrowed triangle. Either two of its edges are arrowed and
the third is not or the three edges are arrowed. In the first case,
the triangular prism can be decomposed into six tetrahedra as
in Fig. 11(b), and in the second case into three. In some cases,
we can also divide the rectangular face corresponding to an
arrowed edge into four parts as in Fig. 11(b) and hence obtain
a different structure. Although these simplicial decomposi-
tions are simpler, for the tilings studied in this work we choose
a different one which does not introduce an additional
entropic term and also generates face-to-face structures
(Fig. 11¢).

Step 1: We choose a point in the interior of the prism and we
join up all the vertices with it by means of a straight line. In
this way, we obtain two tetrahedra and three pyramids.

Step 2: Each pyramid is decomposed into four tetrahedra
corresponding to the four triangles formed from the diagonal
subdivision of their rectangular bases.

We can summarize the results already obtained in the
following.

Theorem 1. The ten compact Euclidean 3-manifolds admit
non-periodic tilings with triangular prisms as prototiles
derived from recursive subdivisions of the faces with the
following properties.

1. The rectangular faces are subdivided according to the
Cartesian product of two one-dimensional substitutions.

2. The triangular faces are subdivided according to the
inflation rules defined by equations (3) or (7) depending on
the pre-axioms which are given by equations (24)—(34) and
Figs. 6-9.

3. The tilings and their simplicial decompositions satisfy the
face-to-face condition.

(a) ()
Figure 10
(a) The prototiles. (b) Inflation of a rectangular face for d = 8 with edges
C (parallel to the x axis) and D (parallel to the y axis) and edge
substitution rules given by equation (4).
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4. The two-dimensional random tilings defined by equations
(12) and (13) induce three-dimensional random tilings on the
manifolds and the configurational entropies depend only on
the information in the faces of the fundamental polyhedra.

5. Concluding remarks

Multiconnected manifolds have found applications in several
fields. Motivated by the discovery of fullerene molecules and
related forms of carbon, several authors have studied full-
erenes on the torus and the Klein bottle (see Kirby & Pisanski,
1998, and references therein; Deza et al., 2000). By defining a
fullerene as a finite trivalent map with only five- and six-gonal

:

(a)

S

step | step 2 %
(c)

Figure 11
Simplicial decompositions: (a) three prototiles, (b) six prototiles, (c)
fourteen prototiles.

faces embedded in a surface, the Euler characteristic formula
permits the existence of only polyhexes for the torus and the
Klein bottle. Also, extensions to space fullerenes as four-
valent tilings of R> have been considered. The existence of
aperiodic order in fullerenes has been studied by Fleming et al.
(1991) and Michaud et al. (1998) although it is still not clear
whether or not the growth is from nuclei with non-crystal-
lographic symmetries.

A different context where multiconnected manifolds
appear is in the study of the topology of the universe
(Lachieze-Rey & Luminet, 1995; Levin, 2002; Luminet et al.,
2003; Kramer, 2005). A non-orientable 3-manifold was
considered by Roukema & Edge (1997) in relation to the
existence of ghost images of astrophysical objects. Linde has
recently argued (Linde, 2004) that compact flat spatial sections
should be considered typical in inflationary cosmologies and
Mclnnes (2005) comes to the conclusion that only three of the
ten compact manifolds are candidates for the explanation of
the topology of the universe. On the other hand, in quantum
gravity, different approaches to an underlying discrete space—
time are Regge calculus, dynamical triangulations, graph-
based theories such as loop quantum gravity, spin foam models
or causal sets (Rovelli, 2004). Because the structures studied
in this paper are based on a recursive procedure, they could be
taken into account as a means to connect cosmic topology with
simplicial quantum gravity theories. Although we have used
two basic planar patterns, other types of higher planar
symmetries (Escudero, 2006b) can be considered. There is
strong evidence that the area of a surface limits the informa-
tion content: black-hole entropy is proportional to the area of
its surface and this is the highest entropy that a space—time
region may have (Bousso, 2002). In our simplicial structures,
the entropy is due to tile rearrangements in the faces of the
fundamental polyhedra and the configurational entropy is
consistent with the Bekenstein—-Hawking bound.

In the tilings considered in this work, there are several
possible alternatives for the choice of the edges perpendicular
to the faces where the pre-axioms are defined. This fact can be
useful in order to construct physical models, because one has
to take into account that there is a freedom in the choice of the
third dimension: oblate and prolate spaces give different
contributions to the quadrupole (Riazuelo et al., 2004). Some
open questions that can also be of interest are the study of the
existence of substitution rules for the prototiles obtained after
the simplicial decompositions, the relationship with projection
methods and iterative constructions of rhombus tilings and the
analysis of the spectrum of the discrete Laplace operator.
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