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Deterministic and random tilings for the ten compact Euclidean 3-manifolds are

introduced. The main tools are substitution rules generating non-periodic planar

patterns and a set of pre-axioms defined for each manifold. The sets of random

tilings are obtained by suitable tile flips in the substitution atlas which allows us

to compute their configurational entropies. The inflation rules in two dimensions

together with one-dimensional substitutions in a perpendicular direction induce

non-periodic three-dimensional tilings by triangular prisms which can be

transformed into simplicial structures.

1. Introduction

Tiling models defined as projection from a lattice of higher

dimension into a lower-dimension physical space have been

studied in the last decades in connection with quasicrystal

theory. Quasicrystal order may appear even for random tilings

(Elser, 1985) and it is not yet known if deterministic tilings are

better candidates than random tilings for the description of

quasicrystal materials. A numerical computation of the

entropy of a three-dimensional random Penrose tiling was

described by Strandburg (1991). Monte Carlo simulations for

rhombohedral random tiling models of icosahedral quasi-

crystals were performed by Shaw et al. (1991) and the appli-

cation of transition-matrix Monte Carlo simulations by

Widom et al. (2002) allowed them to determine the entropy of

three-dimensional random rhombus tilings with high preci-

sion. In order to understand better the tiling entropy,

Destainville et al. (2005) develop a mean field theory for

random tilings based on the iterative construction of rhombus

tilings introduced by de Bruijn (1981, 1986). A great deal of

work has also been done on dimer models (Kenyon, 2000;

Kenyon et al., 2006) in connection with domino, lozenge,

diabolo and other types of patterns. An extension of domino

tilings of planar lattice regions to three dimensions has

been considered by Randall & Yngve (2000). The tilings

consist of filling octahedral and tetrahedral regions with

triangular prisms. Another type of method for the generation

of tilings is based on the existence of substitution or inflation

rules (Escudero & Garcia, 2005). This method can be used

also to generate random tilings when local rearrangements of

tiles are included in the inflation rules. In this case, the

configurational entropy can be computed along the lines of

Escudero (2004). In contrast to the domino tilings (we do not

assume here they have a vertex on the center of its long edge),

which are the basis of the constructions studied by Randall

& Yngve (2000), in this work we are interested in both

two-dimensional and three-dimensional tilings which are

always face to face.

The classification of three-dimensional crystallographic

groups, achieved mainly in the 19th century, led to the deter-

mination of the ten compact Euclidean 3-manifolds (Nowacki,

1934; Hantschze & Wendt, 1935) by taking the quotient of the

Euclidean space by the action of a discrete and fixed point free

group of isometries (Thurston, 1997; Conway & Rossetti,

2003). Recently these spaces have been considered in cosmic

crystallography. Riazuelo et al. (2004) investigate the signature

of the 17 multiconnected flat spaces in cosmic microwave

background maps. They obtain an orthonormal basis for the

set of eigenvalues of the Laplace operator. Also related is the

work by Rossetti & Conway (2006) where it is shown that

there is, up to scale, a unique non-trivial isospectral pair of

compact Euclidean 3-manifolds: only the quarter-turn space

and the Hantzsche–Wendt space have identical Laplace

spectra.

In recent works, non-periodic tilings for simply and multi-

connected flat manifolds in two dimensions have been derived

(Escudero, 2006a,b, 2007). In the present article, the results

are extended to the ten compact Euclidean 3-manifolds. First,

we consider finite triangle patterns which form the pre-axioms

for two of the fundamental polyhedra faces. These have been

chosen in order to have face-to-face patterns after the corre-

sponding identifications. With the help of two-dimensional

substitutions applied to the two triangular faces of the basic

prisms and the Cartesian product of two one-dimensional

substitutions for the three rectangular faces, we obtain the

desired three-dimensional structures, which can later be

decomposed in order to get simplicial tilings. The two basic

planar patterns have 8-fold and 12-fold symmetries. The

octagonal pattern was generated by Escudero (2000) by

extending the construction of Nischke & Danzer (1996) to

even symmetries. The dodecagonal pattern can be derived

with the help of the constructions studied by Escudero (2001,



2003). Both patterns are deterministic and we introduce

random tilings which are defined by means of local re-

arrangements of tiles appearing in the inflation rules. In three

dimensions, they are induced by the two-dimensional random

substitutions, and the configurational entropy depends only on

tile rearrangements in the faces of the fundamental polyhedra.

2. Deterministic tilings for Euclidean 2-manifolds

In this section, we first introduce two substitution tilings of the

Euclidean plane T ild, d ¼ 8; 12, and then we show how the

same sets of inflation rules can be used in order to generate

tilings of the flat torus and the Klein bottle. The two-dimen-

sional tilings are described in terms of word sequences in D0L

systems.

Definition 1. A 0L system is a triple G ¼ f�; h; !g, where

� ¼ fx1; x2; . . . ; xng is an alphabet, h is a finite substitution on

� into the set of subsets of �� and ! 2 �� is the axiom. G is

called a D0L system if #ðhðxiÞÞ ¼ 1, for every xi in �.

The first type of structures T il8 were studied by Escudero

(2006b) for the generation of tilings for two-dimensional flat

manifolds. The letters am; bm; cm; dm; em represent the proto-

tiles

T ðB;A;CÞ; T ðC;B;CÞ; T ðA;A;BÞ;

T ðB;B;DÞ; T ðC;A;DÞ; ð1Þ

respectively, where A;B;C;D have lengths s1; s2; s3; s4, with

sk � sinðk�=8Þ. T ðX;Y;ZÞ is a triangular tile with edges

X;Y;Z placed anticlockwise and the index m 2 Z16 denotes

relative orientation. The tile T ðX;Y;ZÞ with the edge Z

placed on the positive x axis corresponds to the index 1. The

oriented tile with index m is obtained by a rotation of

�ðm� 1Þ=8 through the left-most vertex. The alphabet is

� ¼ fam;eaam; bm; cm; dm; em;eeem; ð; Þg ð2Þ

with m 2 Z16. It contains two brackets and letters of type ti andetti. The tile ett1 is obtained by a reflection of t1 in a line

perpendicular to the edge Z. The set of production rules h is

(Fig. 1a)

am 7 �! ð�8½am�Þ ¼ ðeaamþ7eeem
ebbmþ1dmþ10Þ

bm 7 �! ð�8½bm�Þ ¼ ð�8½am��8½cm�5��8½eaamþ6�Þ

cm 7 �! ð�8½cm�Þ ¼ ðeeemþ7emþ9Þ

dm 7 �! ð�8½dm�Þ ¼ ððamþ6dm�1�8½cm�Þðeaamþ10dmþ1bmþ4bmþ6ÞÞ

em 7 �! ð�8½em�Þ ¼ ðcmþ7eaamdmþ7bmþ10bmþ12eeemþ11Þ

Þ 7�!Þ

ð 7�!ð: ð3Þ

Throughout this paper, the term axiom is used to indicate both

a word and a geometric pattern. By iterating the production

rules applied to any letter representing a tile, we get word

sequences describing the tiling growth. The geometric inter-

pretation of the word sequences is as follows. In the word

ðeaamþ7eeem
ebbmþ1dmþ10Þ, if two letters follow one another inside a

bracket, the corresponding oriented triangles are glued face to

face in a unique way. In the next derivation step, which gives

ðð�8½eaamþ7�Þð�8½eeem�Þð�8½
ebbmþ1�Þð�8½dmþ10�ÞÞ, two oriented

triangles represented by consecutive words enclosed by

brackets like �8½eaamþ7� and �8½eeem� are glued face to face and

again the prescription is unique. For the edge word sequences,

the alphabet is � ¼ fA;B;C;Dg, and the production rules are

A 7 �!�8½A� ¼ D B 7 �!�8½B� ¼ CC

C 7 �!�8½C� ¼ BDB D 7 �!�8½D� ¼ ACCA:
ð4Þ

Now we consider the tiling T il12. The triangle edges, denoted

by A;B;C;D;E;F, have lengths s1; s2; s3; s4; s5; s6, where

sk � sinðk�=12Þ. The letters �m, �m, �m, �m, �m, �m, 	m, 
m, �m,

�m, 
m, �m represent the prototiles

research papers

392 Juan Garcı́a Escudero � Random tilings of 3-manifolds Acta Cryst. (2007). A63, 391–399

Figure 1
(a) Inflation rules for d ¼ 8 with potential regions for flips marked, (b)
inflation rules for d ¼ 12, and tile rearrangements in the inflation rules for
(c) d ¼ 8: dm�1eeemþ7 ) bmþ10amþ2, (d) d ¼ 12: �mþ13�mþ1 ) �mþ12e��mþ10.



T ðA;A;BÞ; T ðB;A;CÞ; T ðB;B;DÞ; T ðC;A;DÞ; T ðD;A;EÞ;

T ðD;B;FÞ; T ðC;C;FÞ; T ðC;B;EÞ; T ðE;B;EÞ; T ðE;A;FÞ;

T ðD;C;EÞ; T ðD;D;DÞ: ð5Þ

The alphabet is

� ¼ f�m; �m;e��m; �m; �m;e��m; �m;e��m; �m;e��m; 	m; 
m;e

m; �m;e��m;

�m;e��m; 
m;e

m; �m; ð; Þg ð6Þ

with m 2 Z24. The production rules h in this case are (Fig. 1b)

�m 7 �! ð�12½�m�Þ ¼ ðe��mþ11�mþ13Þ

�m 7 �!ð�12½�m�Þ ¼ ðe��mþ11e��m�mþ1�mþ14Þ

�m 7 �! ð�12½�m�Þ ¼ ðð
e

mþ10

e��m�1e

mþ10
mþ14Þ

ðe��mþ11�mþ13�mþ1
mþ14ÞÞ

�m 7 �! ð�12½�m�Þ ¼ ð
e��mþ11e��m

e��mþ11�mþ14e

mþ2	mþ15Þ

�m 7 �! ð�12½�m�Þ ¼ ð
e��mþ11

e��m
e

mþ11

e��me

mþ11
mþ15e

mþ3
e��mþ16Þ

�m 7 �! ð�12½�m�Þ ¼ ðð�mþ10�m�1
mþ10	m�1
mþ10�mþ7
mþ18�mþ6Þ

ð�12½�m�e��mþ3e��mþ16ÞÞ

	m 7 �! ð�12½	m�Þ ¼ ðð�mþ9
m�2
e

mþ10

e��m�1e��mþ11�mþ13Þ

ð�mþ9
m�2e

mþ18
mþ14�mþ1
mþ14Þ

ðe

mþ18
mþ6e

mþ2�mþ15
e

mþ2

e��mþ15ÞÞ


m 7 �! ð�12½
m�Þ ¼ ðð�mþ10
e

m�1	mþ10e

m�1�mþ2e

mþ15Þ

ðe��mþ11e��m�mþ1�mþ14	mþ2
e

mþ15ÞÞ

�m 7 �! ð�12½�m�Þ ¼ ðð�12½�m�e��mþ4Þ

ð�m�1�mþ10
m�1�mþ10
m�1e

mþ19
mþ7

�mþ18�mþ6ÞÞ

�m 7 �! ð�12½�m�Þ ¼ ð�mþ11
e��m�mþ11

e

m	mþ11e

m�mþ3e

mþ16�mþ18e��mþ17Þ


m 7 �! ð�12½
m�Þ ¼ ððe��mþ11e��m�mþ1�mþ14	mþ2
e

mþ15e��mþ3Þ

ð�mþ10
e

m�1	mþ10e

m�1�mþ2e

mþ15�mþ17e��mþ16Þ

ð�m�2�mþ9�m�2�mþ9e

mþ7	mþ18�mþ6ÞÞ

�m 7 �! ð�12½�m�Þ ¼ ðð
e

mþ10
m�2�mþ9
m�3e

mþ19Þ

ðe��mþ11
e��m�1e

mþ10
m�2e

mþ18

e��mþ7
e

mþ18Þ

ð�mþ13�mþ1
mþ14e

mþ2
mþ6�mþ17
mþ6Þ

ð
mþ14
e

mþ2

e��mþ15e

mþ3
mþ5ÞÞ

Þ 7�! Þ

ð 7�!ð ð7Þ

and the edge substitution rules are

A 7 �!�12½A� ¼ F

C 7 �!�12½C� ¼ DFD

E 7 �!�12½E� ¼ BDFDB

B 7 �!�12½B� ¼ EE

D 7 �!�12½D� ¼ CEEC

F 7 �!�12½F� ¼ ACEECA:

ð8Þ

The inflation rules given by equations (3) and (7) can be used

for the construction of substitution tilings for the Euclidean

torus T2 and the Euclidean Klein bottle K2 [see Fig. 2(a) for

the principle of gluing on their fundamental polygons]. We can

use the same previously defined D0L systems except the

axiom ! ¼ �d½��, where � denotes the pre-axiom.

A pre-axiom for T2 and K2 tilings is [see Fig. 2(b) left and

the pattern in Fig. 3]

� ¼eee10e12eee2e4d12b15b1d10a1eaa13d4b7b9d2a9eaa5: ð9Þ

For a K2 tiling, we can choose (Fig. 2b, right)

� ¼ d9b12b14a6e13a12e3e11a4eaa12eee5b6b4d1: ð10Þ

Other axioms are possible (Fig. 2c), also based on the tiles

given by equation (5) (see for instance the pre-axiom for the

hexagonal face of c1 in Fig. 6 which is valid also for the

Acta Cryst. (2007). A63, 391–399 Juan Garcı́a Escudero � Random tilings of 3-manifolds 393

research papers

Figure 2
(a) Principle of gluing for the Euclidean torus T2 and the Klein bottle K2.
(b) Pre-axioms for T2 and K2 (left) and for K2 (right). (c) Pre-axiom
for T2.



hexagonal T2). Once we give the substitution atlas and the

pre-axioms, which represent face-to-face patterns, the fact that

the tilings will be always face to face in the derivation process

is a consequence of the form of equations (4) and (8) defining

the edge inflation rules. The reason is that, for any edge X,

both satisfy

�dðXÞ ¼ Mirð�dðXÞÞ; ð11Þ

where the mirror image of a word w is represented by MirðwÞ.

The resulting words are palindromes and therefore the tilings

satisfy the face-to-face condition.

3. Configurational entropy for non-deterministic
patterns

The tilings discussed in the previous section are deterministic,

in the sense that only one production rule is allowed for each

letter at every step in the derivation process. We introduce

random tilings by means of local rearrangements of tiles in the

substitution rules. For d ¼ 8, an edge flip induces the following

tile rearrangement (see Fig. 1c):

dm�1eeemþ7 ) bmþ10amþ2 ð12Þ

and for d ¼ 12 (Fig. 1d)

�mþ13�mþ1 ) �mþ12e��mþ10: ð13Þ

Definition 2. The configurational entropy per tile S is

the logarithm of the number of tilings of a given size and

shape divided by the number of tiles, in the thermodynamic

limit.

For the derivation of the entropy, we identify congruent

prototiles and we take into account only the tile contents in

the first inflation step given by equations (3) and (7) and not

the tile orientations. The frequency of the tile x is denoted

by F x.

Proposition 1. The configurational entropy for the tilings

defined by equation (3) and tile rearrangements given by

equation (12) is

S ¼
2

3þ 2
ffiffiffi
2
p ðF b þ F dÞLog 2 � 0:145: ð14Þ

Proof: The frequencies of the tiles F a;F b;F c;F d;F e in the

tiling are given by the elements of the normalized eigenvector

corresponding to the eigenvalue with largest modulus of the

substitution matrix. The normalized eigenvector associated

with the eigenvalue � ¼ 4þ 2
ffiffiffi
2
p

, highest root of x2 � 8xþ 8,

is

31þ 22
ffiffiffi
2
p

a
;

1

3
;

13þ 9
ffiffiffi
2
p

a
;

62þ 44
ffiffiffi
2
p

a
;

44þ 31
ffiffiffi
2
p

a

� �
¼ ðF a;F b;F c;F d;F eÞ; ð15Þ

where a ¼ 225þ 159
ffiffiffi
2
p

. The general solution to the differ-

ence equation

Tðnþ 3Þ ¼ 6Tðnþ 2Þ þ 8Tðnþ 1Þ � 16TðnÞ ð16Þ

is

TðnÞ ¼ k1ð�2Þn þ k28n��n
þ k3�

n: ð17Þ
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Figure 3
Applying four times the inflation rules given by equation (3) to d1 and d9

and gluing through the edge D, we get the fundamental polygon. This
derivation corresponds to the pre-axiom of Fig. 1(b), which is valid for
both T2 and K2.

Figure 4
Fundamental domains for the compact orientable flat manifolds.



The number of b and d tiles after n iterations

is Nb
n ¼ kb

1ð�2Þn þ kb
28n��n þ kb

3�
n and Nd

n ¼ kd
1ð�2Þnþ

kd
28n��n þ kd

3�
n, respectively, and the total number of

tiles is Nn ¼ k1ð�2Þn þ k28n��n þ k3�
n, where kb

i , kd
i , ki are

constants determined by the initial conditions of the tiles’

content.

We find two copies of dm�1eeemþ7 in �8½bn� and two in �8½dn�

(see Fig. 1a). By taking into account

lim
Nb

m

Nm

¼
kb

3

k3

; lim
Nd

m

Nm

¼
kd

3

k3

; ð18Þ

and that the number of patterns after iterating n times is

22
Pn�1

m¼1
ðNb

mþNd
mÞ; ð19Þ

we conclude that equation (14) is satisfied. &

The corresponding result for d ¼ 12 is given by

Proposition 2. The configurational entropy for the tilings

defined by equation (7) and tile rearrangements given by

equation (13) is

S ¼
1

7þ 4
ffiffiffi
3
p ½2ðF � þ F 	 þ F �Þ þ 6F ��Log 2 � 0:073: ð20Þ

Proof: In this case, we consider the difference equation

Tðnþ 8Þ ¼ 9Tðnþ 7Þ þ 114Tðnþ 6Þ � 296Tðnþ 5Þ

� 1440Tðnþ 4Þ þ 2448Tðnþ 3Þ þ 2720Tðnþ 2Þ

� 2304Tðnþ 1Þ � 1536TðnÞ ð21Þ

with general solution

TðnÞ ¼ k1ð�1Þn þ k2ð2Þ
n
þ k3ð�2

ffiffiffi
3
p
Þ

n
þ k4ð2

ffiffiffi
3
p
Þ

n

þ k5ð�2� 2
ffiffiffi
3
p
Þ

n
þ k64n

ð2� 2
ffiffiffi
3
p
Þ

n
þ k72n

ð�2þ
ffiffiffi
3
p
Þ

n

þ k84n
ð2þ

ffiffiffi
3
p
Þ

n: ð22Þ

Now we have two copies of �mþ13�mþ1 in

�12½�n�;�12½	n�;�12½�n� and six in �12½�n�. By using Mathe-

matica (Wolfram, 1991), we get

F � � 0:0548; F 	 � 0:1266; F � � 0:1181; F � � 0:1645

ð23Þ

and equation (20) is satisfied by following similar arguments to

those given in the proof of Proposition 1. &

4. Tilings for the compact Euclidean 3-manifolds

The fundamental polyhedra for the ten compact flat 3-mani-

folds are represented in Figs. 4 and 5. The front and back faces

are glued as indicated by the letter F. The unmarked faces are

glued straight across and the marked faces are glued as indi-

cated by the small black and white rectangles. In Fig. 4, we can

see two fundamental domains for the Hantzsche–Wendt space

where the identifications are as shown by the letters F, L, R, P.

The tilings we want to consider have triangular prisms as

prototiles (Fig. 10a). Depending on the axiom !, the triangular

faces grow by iterating the inflation rules defined by equations

(3) or (7). The inflation rules for the rectangular faces are the

Cartesian product of two one-dimensional substitutions. We
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Figure 5
Fundamental domains for the non-orientable flat 3-manifolds.

Figure 6
Pre-axioms for the faces marked with F of the fundamental polyhedra
corresponding to c1; c2; c4. In the hexagonal face of the c1 polyhedron,
we draw a path which allows us to describe the pre-axiom by a word
without brackets [equation (25)].



choose the substitutions corresponding to the edges which are

given by equations (4) and (8). In Fig. 10(b), we see an

example for d ¼ 8. The rectangular face has edges C;D and

the first inflation step shown corresponds to the substitution

rules given by equation (4). The axioms for the polygonal

faces marked with letters in the fundamental polyhedra are

! ¼ �d½��, where � denotes the pre-axiom. Only for some

cases do we give the complete word. For the remaining cases,

due to the words’ length, we give only the first and the last

letters of the words representing the pre-axioms. The complete

words can be obtained by following the paths shown in Figs.

6–9. The patterns corresponding to ! are placed on the faces

marked with the letter F in Figs. 4–5 and on the top and

bottom faces for the Hantzsche–Wendt manifold. The pre-

axioms, represented in Figs. 6–9, are the following ones.

(i) 3-Torus (c1)

(a) cubic 3-torus:

� ¼ e12eee2e4d12b15b1d10a1eaa13d4b7b9a5b13a9eaa5; ð24Þ

(b) hexagonal 3-torus:

� ¼ 
10
e

22
14 . . .e��10

e

14�18
e

6
22�0
14: ð25Þ

(ii) Half-turn space (c2):

� ¼eee10e12eee2e4d12b15b1d10a1eaa13d4b7b9d2a9eaa5: ð26Þ

(iii) Third-turn space (c3):

� ¼ e

6
22
e

10 . . . �8e��6�10�22

e

18: ð27Þ

(iv) Quarter-turn space (c4):

� ¼ ð�8½d1�Þð�8½d5�Þð�8½d9�Þð�8½d13�Þ: ð28Þ

(v) Sixth-turn space (c6):

� ¼ e

14
2
e

10 . . . 
10

e

23e��11�13: ð29Þ

(vi) Hantzsche–Wendt space (c22):

� ¼eaa14eee13eaa4b6 . . . e13eee5eaa6d1: ð30Þ

(vii) Klein space (þa1):

� ¼ �16
6
18e

14
e

2 . . .e

18
6

e

14: ð31Þ

(viii) Klein space with horizontal flip (�a1):

� ¼ �6�5�16
e��4�15 . . .e

0�2�15�2e��22: ð32Þ

(ix) Klein space with vertical flip (þa2):

� ¼ 
8
e

20
12 . . .e��0�2
16

e

4
20
e

8�12: ð33Þ

(x) Klein space with half turn (�a2):

� ¼ �4e

11e��2
e��13�1 . . . 	17�5e��18�6: ð34Þ
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Figure 8
Pre-axioms for þa1;�a1 and paths for equations (31) and (32).

Figure 7
Pre-axioms for c3; c6; c22. The words in equations (27), (29) and (30) can
be completed by following the paths indicated.



No brackets are necessary for the pre-axiom descriptions, but

for simplicity we have used them in equation (28). Once we

have the pattern in accordance with an axiom in the two

parallel faces marked with letters in Figs. 4–5, we join up all

the corresponding vertices by straight segments L parallel to

the unmarked faces. This is the first tiling by triangular prisms.

Then in the first inflation step applied to L (edge D in Fig.

10b), each vertex in the resulting one-dimensional tiling

defines in a unique way a plane parallel to the marked faces.

We place by parallel transport in each of this planes the

triangle patterns of the marked faces and we join up again the

corresponding vertices by straight segments. This procedure is

repeated at each inflation step. By construction of the pre-

axioms and because the words representing the inflated edges

are palindromes [see equation (11)], the tilings for the ten

compact Euclidean manifolds satisfy the face-to-face condi-

tion. Also, this condition is fulfilled by the three-dimensional

random tilings induced by the non-deterministic substitution

rules derived from equations (12) and (13), which determine

also their configurational entropies. The reason is that the

entropy computations performed in the proofs of Propositions

1 and 2 give results independent of the initial conditions about

the tiles’ content. If no additional entropic term is introduced

in the three-dimensional constructions, then the entropies

depend only on the type of inflation rules applied to the planar

pre-axioms and not on their tile contents, and hence they are

the same as in two dimensions.

In order to generate simplicial tilings, arrows can be placed

on the edges with certain orientations. A triangular prism is

decomposed into three tetrahedra in accordance with the

arrow orientations as in Fig. 11(a). In addition to the cases

studied in this work, other types of inflation factors and

substitution rules are possible for some manifolds (Escudero,

2006a,b, 2007). In those cases, all the triangle edges have an

arrow except the longest edge. There are two possibilities for

each arrowed triangle. Either two of its edges are arrowed and

the third is not or the three edges are arrowed. In the first case,

the triangular prism can be decomposed into six tetrahedra as

in Fig. 11(b), and in the second case into three. In some cases,

we can also divide the rectangular face corresponding to an

arrowed edge into four parts as in Fig. 11(b) and hence obtain

a different structure. Although these simplicial decomposi-

tions are simpler, for the tilings studied in this work we choose

a different one which does not introduce an additional

entropic term and also generates face-to-face structures

(Fig. 11c).

Step 1: We choose a point in the interior of the prism and we

join up all the vertices with it by means of a straight line. In

this way, we obtain two tetrahedra and three pyramids.

Step 2: Each pyramid is decomposed into four tetrahedra

corresponding to the four triangles formed from the diagonal

subdivision of their rectangular bases.

We can summarize the results already obtained in the

following.

Theorem 1. The ten compact Euclidean 3-manifolds admit

non-periodic tilings with triangular prisms as prototiles

derived from recursive subdivisions of the faces with the

following properties.

1. The rectangular faces are subdivided according to the

Cartesian product of two one-dimensional substitutions.

2. The triangular faces are subdivided according to the

inflation rules defined by equations (3) or (7) depending on

the pre-axioms which are given by equations (24)–(34) and

Figs. 6–9.

3. The tilings and their simplicial decompositions satisfy the

face-to-face condition.
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Figure 10
(a) The prototiles. (b) Inflation of a rectangular face for d ¼ 8 with edges
C (parallel to the x axis) and D (parallel to the y axis) and edge
substitution rules given by equation (4).

Figure 9
Pre-axioms for þa2;�a2 and paths for equations (33) and (34).



4. The two-dimensional random tilings defined by equations

(12) and (13) induce three-dimensional random tilings on the

manifolds and the configurational entropies depend only on

the information in the faces of the fundamental polyhedra.

5. Concluding remarks

Multiconnected manifolds have found applications in several

fields. Motivated by the discovery of fullerene molecules and

related forms of carbon, several authors have studied full-

erenes on the torus and the Klein bottle (see Kirby & Pisanski,

1998, and references therein; Deza et al., 2000). By defining a

fullerene as a finite trivalent map with only five- and six-gonal

faces embedded in a surface, the Euler characteristic formula

permits the existence of only polyhexes for the torus and the

Klein bottle. Also, extensions to space fullerenes as four-

valent tilings of R3 have been considered. The existence of

aperiodic order in fullerenes has been studied by Fleming et al.

(1991) and Michaud et al. (1998) although it is still not clear

whether or not the growth is from nuclei with non-crystal-

lographic symmetries.

A different context where multiconnected manifolds

appear is in the study of the topology of the universe

(Lachieze-Rey & Luminet, 1995; Levin, 2002; Luminet et al.,

2003; Kramer, 2005). A non-orientable 3-manifold was

considered by Roukema & Edge (1997) in relation to the

existence of ghost images of astrophysical objects. Linde has

recently argued (Linde, 2004) that compact flat spatial sections

should be considered typical in inflationary cosmologies and

McInnes (2005) comes to the conclusion that only three of the

ten compact manifolds are candidates for the explanation of

the topology of the universe. On the other hand, in quantum

gravity, different approaches to an underlying discrete space–

time are Regge calculus, dynamical triangulations, graph-

based theories such as loop quantum gravity, spin foam models

or causal sets (Rovelli, 2004). Because the structures studied

in this paper are based on a recursive procedure, they could be

taken into account as a means to connect cosmic topology with

simplicial quantum gravity theories. Although we have used

two basic planar patterns, other types of higher planar

symmetries (Escudero, 2006b) can be considered. There is

strong evidence that the area of a surface limits the informa-

tion content: black-hole entropy is proportional to the area of

its surface and this is the highest entropy that a space–time

region may have (Bousso, 2002). In our simplicial structures,

the entropy is due to tile rearrangements in the faces of the

fundamental polyhedra and the configurational entropy is

consistent with the Bekenstein–Hawking bound.

In the tilings considered in this work, there are several

possible alternatives for the choice of the edges perpendicular

to the faces where the pre-axioms are defined. This fact can be

useful in order to construct physical models, because one has

to take into account that there is a freedom in the choice of the

third dimension: oblate and prolate spaces give different

contributions to the quadrupole (Riazuelo et al., 2004). Some

open questions that can also be of interest are the study of the

existence of substitution rules for the prototiles obtained after

the simplicial decompositions, the relationship with projection

methods and iterative constructions of rhombus tilings and the

analysis of the spectrum of the discrete Laplace operator.
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